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HUMAN AND ROBOTIC DISTRIBUTED
OPERATING SYSTEM (HARD-OS)

CLAIM OF BENEFIT TO RELATED
APPLICATIONS

This application is a continuation of U.S. nonprovisional
application Ser. No. 14/328,916 entitled “HUMAN AND
ROBOTIC DISTRIBUTED OPERATING SYSTEM
(HARD-OS)”, filed Jul. 11, 2014. The contents of applica-
tion Ser. No. 14/328,916 are hereby incorporated by refer-
ence.

TECHNICAL FIELD

The present invention relates to robotics and other devices
that sense and react to the environment and in particular to
a method of efficiently utilizing humans to account for the
lack of perception in these devices. In other words, this
invention improves on the ability of robots to perceive the
world so that they can operate robustly and securely.

BACKGROUND ART

For the past few years, various advances in robotics have
enabled robots to perform complicated tasks. These tasks
include search and rescue, factory automation, precision
surgeries, and basic assistance. However, most of the tasks
involve well controlled environments that are mapped out in
detail and where the problems are very constrained.

One sector in robotics that has not seen a great amount of
growth is the assisted living space where a robot would be
utilized to cook, clean and organize, serve and fetch items
and assist in everyday life. These tasks are extremely
important to the ever growing elderly population and the
disabled, as they often have difficulty performing some
basic, everyday tasks that we take for granted (e.g. getting
themselves water to drink). These problems are not only
limited to the elderly, since any human could utilize such
robots to improve his or her own life.

The main difficulty with the tasks mentioned above has to
do with the uncontrolled environments in which the robots
would need to operate. These problems boil down to prob-
lems with perception, which define the environment for
robots operating in the space. The perception problem is
very evident in the manipulation of objects, where objects
can take on many forms and shapes, as well as be located in
many different places. For example, a glass of water can be
located in many places and could contain various visual
abnormalities (shadows, occlusions, viewpoint, semantic
meanings, etc) which make the task of finding the glass
difficult for various existing systems.

Even for robotic navigation there are still many chal-
lenges despite the fact that modern algorithms have been
able to cope with basic navigation in fairly static environ-
ments using LIDAR and odometry. For example, an object
could appear in front of the robot and the robot would need
to understand what the object is in order to decide how to
proceed. If robots had good perceptual systems, then they
would be able to perform many tasks with extreme precision
and in an optimal manner, with better outcomes than
humans. For example, a robot would need to know all the
locations of the game pieces in chess before computing the
most optimal move and moving the correct piece to the
appropriate position.

Even if the perceptual problem was to be solved, there are
still other challenges that need to be solved in order to
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effectively provide assistance to the elderly, the disabled, or
other humans. These problems include security and fault
tolerance. Computer network security would need to be
significantly addressed so as to reduce the potential harm to
humans due to unauthorized use. Informational security to
protect personal information would also be of high concern.
Fault tolerance, which manifests itself as errors or lack of
perception, would need to be addressed for the robot to be
useful. Fault tolerance is also important, since the robot
could potentially cause harm to people or get stuck without
knowing how to complete the task.

SUMMARY OF THE INVENTION

It is objective to solve the previously mentioned problems
in perception, security, and fault tolerance by facilitating the
cooperations between humans and algorithms to compensate
for the robot’s shortcomings in these areas in an efficient
manner. The proposed solution is to introduce a human and
robot distributed operating system (HaRD-OS).

The HaRD-OS efficiently and dynamically connects dif-
ferent human operators and algorithms to multiple remotely
deployed robots based on the task(s) that the robots are to
complete. Specifically, the HaRD-OS selects a human opera-
tor that is best suited to handle a task confronting a robot
manually or semi-autonomously or an algorithm that is best
suited to handle the task fully autonomously, and the HaRD-
OS switches human operators and algorithms as the tasks
change and different skills sets are needed to operate the
robot. A selected human operator or selected algorithm is
permitted limited control over a robot in need of completing
a task. The limited control restricts the human operator or
algorithm to a certain set of actuators and sensors of the
robot needed to complete the task while other actuators and
sensors are unusable by that human operator or algorithm for
the task. Control is relinquished when the task is completed
or an error is encountered at which time the HaRD-OS can
again select a different human operator or algorithm for a
subsequent task.

In this distributed manner, the HaRD-OS is able to have
a single operator which can perform multiple jobs simulta-
neously while preventing unauthorized access to locations/
items or rescuing the robot in the event of a fault. This in turn
positions the robot as more of an extension of a human,
allowing the robot to act as a tool that enables humans to
work more efficiently. As a result, the humans are then able
to multiplex between various tasks, utilizing robots to
increase the amount of work they are able to perform. In
addition, when a robot is performing an autonomous task or
is idle, an operator can immediately be made available to
another requesting robot for increased productivity.

Human input is also used to seed fault tolerance systems
so as to achieve robust performance across a range of tasks,
and to indicate when a robot is stuck. For example, a human
might show the robot where on the floor it needs to pick up
trash and while the robot is picking up the trash, the human
can show a different robot where to pick up trash at another
location. Additionally, since the human marked the location
of the trash and its type, the information is used to seed the
fault tolerance systems in the event that the robot tried to
pick something up and failed or the object in its hand is not
what it was supposed to pick up. The robot is then able to
recover autonomously from this failure, but in the event that
it is unable to proceed or detects a fault, then a human can
be interrupted to help the problematic robot with the fault.
For example, if the robot attempted to pick up a bottle and
the bottle slipped and rolled out of the reach or view of the
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robot, the human can provide the robot with the new location
of the bottle. Further, multiple operators can be involved in
assisting a single robot. For instance, one operator can be
guiding the robotic arm to pick up a coffee cup, and another
operator can be looking for the location of the coffee pot so
the target location for the next step of the task can be known
immediately.

Accordingly, the HaRD-OS coordinates the synergy
between humans, algorithms and robots. Since the system is
distributed, there can be multiple computers/devices running
HaRD-OS, which we will call HaRD-OS modules and
nodes. HaRD-OS modules and nodes can be connected in
many ways that facilitate the communication and coordina-
tion between human operators, algorithms, and robots to
provide services/tasks to other people in need. Using the
proposed HaRD-OS, a single operator supported by algo-
rithms can perform multiple jobs simultaneously while
being preventing unauthorized access to locations/items or
can rescue the robot in the event of a fault. Further, multiple
operators and algorithms can help a single robot during
complex operations. A HaRD-OS node is able to manage
task allocation, sub task allocation, security, and fault sens-
ing/handling in the most efficient manner utilizing the
humans, algorithms and robots as resources. In particular, a
HaRD-OS node facilitates an action/perception loop
between the operators, algorithms and robots. This is
achieved by routing tasks between human operators or
algorithms based on various routing polices. For example,
the HaRD-OS can route subtasks based on operator famil-
iarity, aptitude, access rights, end user preference, time
zones, costs, efficiency, latency, privacy concerns, etc. In the
event of a fault, the HaRD-OS node is able to route to the
best operator or algorithm that is able to handle the particular
fault with the required privileges. The node is also able to
secure task guarantees to be completed at particular times,
priorities or costs. This results in the whole system becom-
ing very efficient at completing multiple tasks simultane-
ously such as cooking, cleaning, and organizing for multiple
residences/end-users simultaneously.

Thus, some embodiments provide systems and methods
for routing and scheduling tasks to facilitate control of any
of a plurality of robots by (i) configuring an access control
list that identifies human operators that are each qualified to
perform some set of tasks that partly involve human control
of a robot and that also identify algorithms for instructing a
robot in performing a set of tasks fully autonomously
without human control of the robot, (ii) receiving a request
identifying a robot and a task for the robot to perform, (iii)
determining based on a set of criteria, at least one human
operator or algorithm for optimally controlling the robot in
performance of the task, (iv) providing a particular human
operator control of the robot when the task is one of the first
set of tasks that partly involves human control and the
particular human operator is identified within the access
control list as being qualified to optimally perform the task
in conformance of the set of criteria, and (v) providing a
particular algorithm control of the robot when the task is one
of the second set of tasks that the robot can complete fully
autonomously and the algorithm comprises instructions for
optimally completing the task fully autonomously in con-
formance of the set of criteria.

Some embodiments provide systems and methods for
routing and scheduling tasks to facilitate control of remotely
deployed robots by (i) receiving a request identifying a robot
from geographically distributed robots and a task for the
robot to perform, (ii) initializing the robot in performing the
task by configuring the robot with an algorithm that instructs
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the robot in performing the task fully autonomously without
human control of the robot, (iii) commencing operations of
the robot under control of said algorithm, (iv) monitoring
performance of the task by the robot under control of said
algorithm, and (v) terminating control of the robot upon
detecting completion of the task or a fault as a result of the
monitoring.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the invention,
reference is made to the following description and accom-
panying drawings, in which:

FIG. 1 shows an exemplary architecture for a preferred
embodiment of the human and robot distributed operating
system (HaRD-OS).

FIG. 2 shows components and connections associated
with each HaRD-OS module of some embodiments.

FIG. 3 shows how messages are passed through the
various modules and nodes in FIG. 1 among multiple
locations within the HaRD-OS system architecture of some
embodiments.

FIG. 4 illustrates the main functional components of the
HaRD-OS node in accordance with some embodiments.

FIG. 5 illustrates the flow of data through the HaRD-OS
node in accordance with some embodiments.

FIG. 6 illustrates HaRD-OS data tables of some embodi-
ments.

FIG. 7 shows the flow of information through the authen-
tication/authorization modules.

FIG. 8 presents an example of the robot hardware which
consists of any embodiment that can both sense and manipu-
late objects around it as well as itself.

FIG. 9 presents an example embodiment of a robot.

FIG. 10 presents an example of how an operator is
connected to the HaRD-OS node.

FIG. 11 illustrates the scheduling of a task in accordance
with some embodiments.

FIG. 12 illustrates the scheduler initiating a task in
accordance with some embodiments.

FIG. 13 illustrates the data flow during the fault handling
procedures of some embodiments.

FIG. 14 presents an example configuration for two HaRD-
OS8 nodes in accordance with some embodiments.

DETAILED DESCRIPTION

In the following detailed description, numerous details,
examples, and embodiments are set forth and described. The
described methods and systems are not limited to the
embodiments set forth, and may be practiced without some
of the specific details and examples discussed. Also, refer-
ence is made to the accompanying figures, which illustrate
specific embodiments in which the methods and systems can
be practiced. It is to be understood that other embodiments
can be used and structural changes can be made without
departing from the scope of the embodiments herein
described.

FIG. 1 shows an exemplary architecture for a preferred
embodiment of the human and robot distributed operating
system (HaRD-OS). In this scope, the human requesting the
robots [2] to complete various tasks is referred to as the end
user [5], while the humans controlling/communicating with
the robots [2] to accomplish the task are referred to as the
operators [3]. Algorithms [4] can also control the robots [2],
but do so in an autonomous fashion and are often used in
conjunction with the operators [3] to accomplish a task. The
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HaRD-OS is comprised of distributed modules such as R1
[1], R2, R3, and R4. The modules are used to facilitate
communications between the robots [2], operators [3], and
algorithms [4] as well as secure and monitor the tasks being
performed. The HaRD-OS modules R1, R2, R3, and R4 can
also communicate between themselves to optimally decide
the best resources to use for a given task, wherein the
resources can include the human operators [3], algorithms
[4], as well as the robots [2] and their corresponding
functionality, sensors, actuators, etc. During module setup,
various proprieties such as resources availability, type (ro-
bot, algorithms, operator, node), and security keys are con-
figured. The HaRD-OS modules then use this information to
compute the optimal resources for a task requested by the
end user [5].

FIG. 2 shows components and connections associated
with each HaRD-OS module from FIG. 1. Each module runs
a HaRD-OS node, and the various connections between
modules shows an example of how they can be linked
together. Each module can provide different capabilities for
a robot. For instance, the robot [10] might only have a basic
navigation algorithm, while HaRD-OS2 [8] might have a
custom pizza-making algorithm. An Operator [6] is an
interface where a human operator can manage and assist
robots in the system. A HaRD-OS node [7,8] routes and
schedules work between human operators, algorithms and
robots. In a similar vein to an internet router, each HaRD-OS
node only needs to know how to direct workflow to the next
hop, and not the complete route. A robot [10] is any device
with sensors and/or actuators that allows the system to
perform a service for an end user [11].

Within each module there are multiple components that
can be seen. Each HaRD-OS node is in charge of routing,
scheduling, authenticating and authorizing the work that
needs to be done. The Algorithm Database [9] (AlgDB) is a
collection of autonomous and semi-autonomous algorithms
that are available for the robot to use. These algorithms are
designed to interface with the robot using standardized
Control and Sensor algorithms that are installed on each
robot. The flow of information between the nodes pertains to
work that needs to be done (task request) as well as the task
itself (task commands). The work can be accomplished
purely by algorithms (autonomous behaviors such as those
contained in HaRD-OS2 [8]) or along with human operators
in semi-autonomous or manual control behavior such as
done by Operator [6]. Lastly, end users [11] are the users that
request work from the robot. For example, if the end-user
requires the robot to bring him hot tea, the nodes would
schedule the correct algorithms or human operators from the
various locations to accomplished this work. Note that the
robots, modules, and operators can be placed in various
physical locations such as different rooms, buildings or
countries. The end users can also request work from various
robots based on their access rights.

One can note that in the Operator [6] various arrange-
ments of connections can be made inside a module. Within
an Operator, multiple GUIs can be connected to a single or
multiple AlgDBs which are connected to a HaRD-OS node.
This enables the system to take on any required topology.
Additionally, the Operator [6] can be a separate business
entity having their own topology of nodes providing services
to end-users. One can also see in the robot [10] that a
dedicated operator providing services to one robot can also
be realized. It is also important to note that the HaRD-OS1
[7] can also belong to a different business entity providing
autonomous or semiautonomous services.
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FIG. 3 shows how messages are passed through the
various modules and nodes in FIG. 1 among multiple
locations within the HaRD-OS system architecture. When a
request to execute task 1 (T1) is given through Task Request
[18] module to module R1 [12], the module determines that
the entity capable of executing the task is the R2 [13]
module via the R2:T1 connection. When R2 [13] receives
the request, it optimally chooses one of its operators [17]
who is capable of executing the task. The human operator
[17] then determines that the best action to take is to execute
the T2 function on the robot at R1 [12] module. R2 [13]
module will then forward and sign the request via the R1: T2
link to execute T2 on R1 [12], for which R1 [12] will
execute directly on the robot.

FIG. 3 also shows another possible route for the comple-
tion of task R1:T1. One can see that the R1 [12] module
would first decide to forward the request to R3 [14] via the
R3:T4 path, for which R3 [14] will forward the request to R4
[15] via the R4:T3 path. Module R4 [15] has a human
operator and an automated algorithm, both capable of
executing the task. When module R4 [15] determines that
the best entity capable of completing the task is the autono-
mous algorithm it passes the request to it. Algl would then
pass the request back to its module R4 [15] which would
forward the request to R3 [14] and ultimately to R1 [12] to
be executed on the robot as task 3 (T3). However, a more
efficient way of sending the request could be done via a
permission slip, which would send the request directly to R1
[12] from R4 [15]. The permission slip is described in more
detail later in the text.

1. Human and Robot Distributed Operating System
(HARD-OS)

The HaRD-OS node is used to facilitate the assignments
of tasks between operators, algorithms and robots in the
most efficient means, as seen in FIG. 5. The goal of the node
is to optimize the amount of completed tasks taking into
consideration the ability of the operators and the robots. This
allows the operators to perform multiple tasks simultane-
ously. Note that a single operator can perform multiple tasks
without necessarily knowing which robot he/she is interact-
ing/controlling. For example, if the operator is only used for
marking objects for pick up, he/she might not know which
robot is receiving the marked locations. Additionally, a
different operator might be required to perform the actual
pick up task either because of security privileges or due to
the complexity of the task. Therefore the HaRD-OS node
achieves the required work by routing tasks between human
operators and algorithms based on various routing polices.

The main functional components of the HaRD-OS node
are depicted in FIG. 4. These include the authentication [19]
module to ensure that only particular users can execute
tasks; the authorization [20] module, which is used to ensure
that particular end users, algorithms or operators requests are
only able to execute the tasks that are assigned to them; the
routing [21] module contains a local structure of who
(operator/algorithm/node) is able to complete a particular
task; the scheduler [22] module is in charge of scheduling
the tasks to the correct module, keeping track of the current
task progress and checking for faults and routing tasks based
on various polices; and the fault handling [23] module is
designed as a safe guard to ensure that the task is being
executed as desired. The Remote Procedure Call (RPC) to
the HaRD-OS node can execute a task on the node or request
for a task quote (RFQ), as shown in RPC [24] (among other
standard RPC calls). On the other hand, the HaRD-OS node
can execute specific algorithms either through an operator or
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a standalone algorithm as shown in task calls [26]. In
addition, the HaRD-OS node can route tasks to other nodes
via the remote task [25].

The flow of data through the HaRD-OS node is shown in
FIG. 5. The node is composed of a task initialization [27],
authentication [28], and authorization [29] modules which
take a task request, parse, authenticate, and authorized it.
Then, utilizing the multiplexer [32] the scheduler [33] routes
the task to the best available resource module based on costs
and efficiencies. The resource modules include remote
HaRD-OS [34] nodes for other nodes to complete the tasks,
a robot [36] which is capable of carrying out the task, a
human operator [37] which is able to manipulate the robot
to perform the task, or a state machine [35] that contains an
algorithmically derived sequence of sub tasks/modules to
complete the main task. Lastly, the check fault [42] module
checks if the task is completed or if the task generated any
faults, and routes appropriately.

When a task gets initialized via the task initialization [27]
module, the authentication [28] module first checks that the
entity issuing the request is allowed to communicate with
the node. This is done by first checking the entity’s public
key against a table of known identifiers (i.e., ids) and
ensuring that the command was signed using the stored
entity’s public key. Once the entity is authenticated, the
authorization [29] module parses the request and extracts the
task information about the request, which is used to ensure
that the entity requesting the task has valid permissions. This
is achieved by checking an Access Control Lists (ACLs)
using the public key of the entity as the id. The results of
these checks go into the auth check [30] process, which
simply checks that all the requirements are met. If any of the
requirements are not meet, then the request is sent to the auth
fail [31] process, which could simply reject and log the
unauthorized request. However, if the request is allowed to
proceed, it would then get routed to the modules that are
capable of completing the task. This is handled by the
multiplexer [32] and the scheduler [33] which will use
various parameters such as costs and efficiencies to deter-
mine the most optimal module to complete the task. In this
context, cost is in reference to an actual monetary fee, while
efficiency is determined in terms of time, fewest operations,
and other optimal criteria.

An example configuration for a HaRD-OS implementa-
tion is shown in FIG. 6. There is a list of algorithms [45] that
are available, which includes a list of regular algorithms and
fault handling algorithms in the system. There is also a list
of filters [47], which modulate the operation of various
algorithm/operator during a task. A groups [46] table is also
kept, which describes the different groups in the system. The
authentication [48] table, lists all of the entities (operators,
robots, end users, nodes, etc.) that have valid public keys
recognized by the system. The authorization [49] table is
shown describing what entity or group is authorized to run
which algorithms, and which filters to run on top of them.
The scheduler [50] table, shows the currently scheduled
tasks in the system, along with their expected cost, priority,
and unique task token, in addition to the id of each task and
the algorithm or operator that will run the task. The routing
[51] table, shows the possible algorithms or operators to
which a particular TaskID can be routed, along with the
associated fault handling algorithm that should be run when
executing the task.

The scheduler [33] module has an array of modules to
choose from to complete the task. These include a remote
HaRD-OS [34] node located elsewhere which could com-
plete the task, a state machine [35] module, which would

25

40

45

8

contain an algorithmically derived sequence of sub tasks to
complete, a robot [36] that can physically execute the task,
a human operator [37] that is capable of manipulating the
robot to execute the task, and an autonomous algorithm [38]
that is also capable of autonomously manipulating the robot
to complete the task. Note that not all modules are connected
to a particular node. A node can contain several robots [36]
with no operators or other modules. Likewise, a node can be
linked to various operators [37] and algorithms [38] to just
provide services to control robots at other remote locations.

While the scheduler [33] is communicating with the
desired module to execute the task. The check fault [42]
module is in charge of monitoring the progress of the
execution of the task to check for any faults or abnormalities
while the task is in progress. If a fault is detected, then the
node passes the processing to a fault handling [43] module
which will then attempt to fix the fault through various
means described below. If however, the task is completed
then processing is passed to the done [44] module to signal
the completion of the task. This in turn would cause the node
to move to a next state in its state machine [35] to execute
a different task or return with a final completed task.

To ensure that only authorized entities can execute
allowed tasks as well as control what that entity can perform
and sense during the task execution an auth check [30]
module is utilized. The flow of information in this module is
shown in FIG. 7. Both authorization and authentication are
accomplished by using a pair of public/private keys as well
as access control lists (ACLS) to ensure that only authorized
entities are able to execute particular tasks. Each operator,
node, algorithm, or end-user has a private key that is able to
sign various information and thus authenticate itself to the
system. This is done using a sign command [52] which signs
the given command with the entity private key and then
sends it to a given HaRD-OS node via the send command
[53] module. When the HaRD-OS node receives the com-
mand via the command receive [54] function, it parses the
command and checks the signature. This can be done in
multiple ways. One simple way is to store the public-key of
the entity in a database on the node as shown in authenti-
cation [19]. The node can then check the signature of the
command to ensure that the entity is authorized to run a
particular command using the check auth [55]. This imple-
mentation can take on various forms but the simplest would
be to use an access control list using the ACL [57] module
with public keys and their matching authorizations. The
authorizations would then have a direct effect on which tasks
an end-user can request and an operator or function can
perform. Note that each node in the system also contains a
private key which is used to sign commands. This means that
a node can sign commands to forward tasks or get requests
from other nodes up the chain as well as verify them by
signing them.

To help with key management, a particular node also has
the ability to sign permission slips, which would allow third
party public keys from a given node to execute particular
tasks given that the messages are signed with a permission
slip from a trusted party. This will allow the robot to trust the
incoming request based on the permission slip and the
matching public key to execute the given task. In addition to
the command, the permission slip could contain any of the
authorized algorithms included on the HaRD-OS node. The
permission slip could also have expiration information,
which will render the slip void. When a node wants to use
the permission slip, it can simply include the slip in the
packet, where the receiving node can check (using the public
keys of both entities) that the permission slip is valid.
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The authorization in the node is handled by the command
filter [58], which fetches an algorithm to act as a filter that
manipulates the robot sensors and controls based on the
task/operator access rights. The execution of the task is then
handled by the command run [59] module which applies the
filter algorithm to the robot sensors or controllers to only
enable the robot to perform the particular tasks. This can be
seen in the second item of authorization [20]. This item is
able to apply a filter function or a set of constraints to the
task. For example, if the task was to pick up objects from the
floor, the arm of the robot could be filtered to only be able
to operate below the robot waist and only place objects in the
robots tray. In addition, any sensors which look above the
robot waist would be disabled or blocked out. For example,
a face detection algorithm could be run to blur-out the faces
if the task does not require interaction with the end-user. If
a particular sub task does require authorization not given to
the current operator, the node would route the task to another
operator with the appropriate authorization, or possibly
recruit the help of a supervisor who can temporarily upgrade
privileges of an available operator. It is important to note
that the operators or algorithms can be located in multiple
locations around the globe with various access rights
assigned by the end-user or the router administrator. Each
node is responsible for authenticating and authorizing mes-
sages that it receives to ensure only the appropriate operators
are providing the correct tasks.

In this scope, we define Operator ID (OpID) to be a
unique number that identifies a particular human operator,
and Algorithm ID (AlgID) to be a unique number that
identifies a particular algorithm to be used. A Task ID
(TaskID) is a unique identifier for a particular requested task
that can be translated into a combination of OpIDs and
AlgIDs. The routing module [21] contains a database with
which specific algorithms or operators are able to complete
a given task. For example, the module might route all baking
related tasks to a particular OpID, but might route object
pickup tasks to an AlgID of a generic grasping function. This
is shown in item 1, which maps a TaskID to either an AlgID
or an Operator ID (OpID). A fault handling id is also
provided to know how to route in the case of a fault. In
addition a TaskID can be mapped to another node with
ID:TaskID. This means that a different node would be in
charge of completing the task. This is shown as item 2,
which maps a TaskID to a NodelID (such as IP address).
Lastly, a given TaskID can map to a sequence of TaskIDs.
The sequence will be tasks that are going to be executed in
that order. Note that some tasks description can include
algorithms which will be checked to see whether to proceed
to the next task. For example, when using text-to-speech to
map end-user requests to TaskIDs, the system can first use
a Text to Speech (TTS) algorithm and if the confidence of
the translation is below a threshold, it can route it to another
algorithm or operator.

The scheduler [22] module is in charge of scheduling,
routing, and monitoring the execution of tasks. The sched-
uler will contain various information on the tasks as they are
being executed, such as what node and algorithm/operator is
currently in control, how long the task has been running, and
any faults that have been generated. In addition, the sched-
uler can receive Request for Quotes (RFQs) to get the time
and cost quote of the required task. Quotes are provided
back to the RFQ originator, and help a node make decisions
on scheduling or routing the tasks using programmed algo-
rithms. While utilizing the routing [21] database, the sched-
uler would then route a task given various criteria. For
example, the scheduler would route tasks based on operator
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familiarity, aptitude, access rights, end user preference, time
zones, costs and efficiencies, privacy concerns, etc. Addi-
tionally, in the event of a fault the scheduler is able to route
the task to the best operator or algorithm that is able to
handle the particular fault with the required privileges. The
scheduler would also contain information on how to com-
plete a task by mapping it to various sub-tasks. These
sub-tasks might include autonomous behavior or operator
assisted tasks.

A task scheduling example can be found in FIG. 11. The
first step is for an authorized node to request a task. This
causes the scheduler to send a request for quote (RFQ) [81]
to collect prospective operators’ or algorithms’ cost, avail-
ability, and other criteria. An RFQ will have a deadline, by
which all quotes must be returned. HaRD-OS Nodes have
access to static quotes [83, 84| associated with operators or
algorithms that are directly connected to it. The node can
then propagate its own RFQ [82] to a higher-level HaRD-OS
node, with its own set of operators/algorithms and/or other
nodes. These will return a bundled set of dynamic quotes
[85], which are similar to the static quotes [83, 84] but are
computed based on current resource utilization. An RFQ
can, in this way, propagate up the network hierarchy if so
desired. Nodes that choose to respond will do so with a quote
that is good for a certain amount of time before expiring. The
scheduler will collect the currently available quotes, and
make its decision based on the weighted criteria. The
scheduler will then accept the quote [87] of the winning
node, and then notify [86] the original requesting node of the
result.

When a scheduler executes a task it creates a unique token
named Task Token [96], which is used as an indicator for
RPC calls to be able to execute tasks on the node. The reason
for this is that resources such as humans, actuators and
sensors are often mutually exclusive and cannot operate on
two tasks at the same time on the same robot (i.e. a robot
cannot go to the kitchen and the family room at the same
time). Therefore the token supplies the scheduler with the
knowledge that a given RPC call is associated with the
current running task, which would be coming from a remote
node. In turn, this allows the scheduler to block other tasks
from coming in if they do not belong to the current task. This
can be thought of as opening a tunnel for task executions,
that only commands in that tunnel can be executed. Other
tasks can be chosen to be blocked or continued depending on
needs and resources. For example, if the node on the robot
requested to navigate to the kitchen from a remote node, the
remote node would be able to execute the navigate function
using the task token. However, if another node requests the
navigate function, but did not supply the correct token, the
receiving HaRD-OS node would block the call or reject it
until the main task is finished.

A task initiation example is shown in FIG. 12. When the
scheduler [90] determines that it is time to initiate a task (this
could happen immediately after the quote is returned, or at
a later scheduled time), the scheduler notifies the appropriate
provider that the task is initiated [93] along with the new
Task Token [96]. That provider will then attempt to gain
control [94] using the Task Token. If the robot is functioning
and available to perform the task, it will acknowledge that
control has been given [95].

Any node can request a task, given they have authoriza-
tion to perform the task on a given robot. For example when
an end user verbally requests the robot to fetch them the TV
remote, a TTS task is generated, the TTS gets routed to a
node (possibly the node on the robot) and the node then
converts the verbal request to a known TaskID for find and
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pickup object, which is then routed appropriately. Alterna-
tively, the robot could generate its own task, such as when
it detects low battery and has to proceed to its charging
station. Finally, a human operator can request a task, if for
instance, a family member requests the system to check on
the health of an elderly person who has a robot on the
premises.

Another process of the node is to seed and route the
detection of faults and fault recovery. This is achieved in the
fault handling [23] module. When a user requests a task, the
operator or function would help in monitoring the task as
well as the seeding of faults. The seeding of faults involves
identifying the appropriate node to define the fault seed, and
the definition itself, which is composed of task expectations
and fault priority. Task expectations are various parameter
and/or sensor ranges for what would be considered a correct
implementation of the task, and the fault priority is the
ranking of this fault with respect to other faults that might
occur. Task expectations can be as simple as a task timeout
or a complex set of action sequences that can be made in a
particular order and configuration. Task expectations can
involve motor current and velocity limits, and robotic work-
space constraints. Further it can consist of other algorithms
that take sensor information and attempt to detect faults,
such as a collision detection fault algorithm that constantly
monitors the robot’s movement for any collisions. For
common tasks, these fault seeds could be retrieved autono-
mously from stored seeds or dynamically generated from an
algorithm. Additionally, fault monitoring can be achieved by
an operator, who would be monitoring the progress of a task
and press the appropriate fault button to generate a fault if
something goes wrong. For instance the operator could
watch video of the robot as it is picking up a cup and press
the “Object Dropped Fault” button if the cup falls during the
pickup, which would send a message to the controlling node.
As a result, the scheduler would now have task related
expectations as well as fault handling priorities. If any of the
expectations are not met, then the appropriate fault would be
generated and passed to the node via an RPC call. The
scheduler would then route to a capable operator or algo-
rithm based on the routing policies in routing [21]. Fault
descriptions can include but are not limited to arm joint
angles, wheel velocities, robot location, robot acceleration,
power draw, locations of known obstacles, work space
violations (detected thought cameras or range sensors), etc.
Note that faults are not required to be sensed by the seeds,
but could also be caused by preprogrammed faults such as
low battery, sensor malfunction, various sensors thresholds,
power interruptions, emergency stop buttons (E-stops),
emergency voice commands (HELP, STOP, etc.), buttons, or
operator generated faults.

Another way of providing the fault seeds is by simulating
tasks beforehand, using kinematics and dynamics simula-
tions, and seeding the fault sensing algorithms based on the
results. If, while the robot is performing the task, it veers too
far from the expected simulation a fault would be generated,
which the node would route to a capable operator. The
simulations can also be used to ensure that an operator with
basic authorization is performing the task as expected. If the
expectation between the operator and the simulations are not
met, a fault would be generated. The node would then route
the task to a more authorized operator to handle the fault or
to check the situation.

In the event of a fault, it is then the scheduler’s job to route
the fault to the appropriate location that would be able to
handle the fault. This location can be an operator or an
autonomous algorithm that is capable and authorized to
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handle the fault. Fault handling might be routed and trig-
gered multiple times before eventually reaching a conclu-
sion. For example, one such fault recovery might be decided
based on sensory information from the gripper. If the gripper
is not holding something, then the router could route the
fault to an autonomous algorithm which would recover from
the fault based on learned behavior and fault recovery.
However, if the gripper is holding a glass of water, then the
fault might be routed to a human operator to handle the fault.

FIG. 13 shows the detailed fault handling procedures that
are shown as fault handling [23] in FIG. 4. Upon acceptance
of'a task by a Task Handler [99], a set of Fault Handlers (e.g.
[100,101]) and a Fault Monitor [102] are instantiated by the
system. Fault Handlers are human operators and algorithms
that are authorized to assist with the recovery of different
faults. This Fault Monitor [102] is configured with specific
task expectations which it utilizes to detect a fault. For
example, task expectations can involve motor current and
velocity limits or robotic workspace constraints. Further it
can consist of other algorithms that take sensor information
and attempt to detect faults, such as a collision detection
fault algorithm that constantly monitors the robot’s move-
ment and surroundings for any collisions. During task ful-
fillment, selected parameters from the robot (such as sensor
readings, or actuator commands) as well as internal param-
eters from the Task Handler [99] are routed to a Fault
Monitor [102] for checking (see [106] and [103]). When
data sent to a Fault Monitor [102] falls outside of acceptable
tolerances, a fault is triggered. Triggering a fault notifies the
Fault Priority Multiplexer [98] to switch control to an
appropriate Fault Handler [100, 101] via an RPC call [108].
Additionally, the Fault Handler [100, 101] is notified
through an RPC call [105] that it now has control over a set
of robot functionality. Once notified, a Fault Handler [100,
101] works to bring the set of parameters into nominal
ranges through use of the granted functionality. Once nomi-
nal parameter values are achieved, the Fault Monitor [102]
may either return control of the robot functionality to the
Task Handler [99], or it may terminate the task and trigger
a Task Failed Fault. At any time, the Fault Monitor [102]
may terminate the Fault Handler [100, 101] with a Task
Failed Fault if it determines that fault handling has failed.
Upon triggering a Task Failed Fault, a high priority service
request is triggered and sent to a technical support team for
resolution. If nominal parameters are achieved by the Fault
Handler [100, 101], the FaultMonitor [102] may: terminate
the task with a Task Failed Fault, return control of the robot
functionality to the original Task Handler [99], or terminate
the original Task Handler [99] and request fulfillment by a
different Task Handler.

The computational modules used in all the systems can be
in any forms including micro-controllers, GPUs, ASIC,
CPUs, etc.

Information between the nodes and the various compu-
tational devices can be transmitted using various means. For
example WIFI, Ethernet, serial communication, USB, radio
frequency, etc. These communications would mostly be over
encrypted channels but are not limited to that (e.g. IPSec).
Additionally, the network between the modules could be
private, public or a combination of both. Various protocols
could be utilized like TCP/IP, VPNs, IPSec, etc.

II. Robot Hardware

The robot hardware in FIG. 8 includes any embodiment
that can both sense and manipulate objects around it as well
as itself. This includes but is not limited to robotic platforms
that are capable of manipulating objects using a robotic
armor are capable of navigating using a mobile platform
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(RobotActuators [65]). The robotic platform does not nec-
essarily need to be mobile or manipulate objects. One can
note that many manifestations of hardware platforms could
be developed which are cable of manipulating objects or
themselves in many ways. FIG. 9 depicts one such embodi-
ment but is obviously not limited to that platform. One or
multiple arms [73] could be mounted on the robot as well as
various means of locomotion such as legs, wheels, tracks,
etc [76]. The robot could grasp, lift, and move objects, open
and close doors, and manipulate objects. The robot could
also look for objects or people, as well as identify unsafe
situations, such as a gas stove top left on, or the presence of
an intruder using cameras [68], or other ranging sensors [69]
mounted on pan-tilt heads [72] or at the ends of manipulators
[74]. Communication with other HaRD-OS nodes could take
place over a wireless communications link [71].

Additionally, the robotic hardware contains various sen-
sors to sense its environment (RobotSensors [67]). These
can include but are not limited to laser range finders,
encoders, gps, ultrasonic sensors, tactile sensors, 3D RGB
sensors, visual sensors, cameras, etc. The sensors can be
preprocessed using various algorithms for both embodi-
ments as well as compression before propagating further
down the chain of the perceptual/action loop. For example,
a noisy sensor might run a filtering algorithm (like a Kalman
filter) to smooth out its output or other, more complicated
filtering/processing algorithms.

In FIG. 8, one can see that the manipulators RobotAc-
tuators [65] are controlled by control algorithms RobotCon-
trolAlg [64] to provide low level control of the robotic
actuators through a standardized interface as is common in
the field. For example, a PID controller could be utilized as
a RobotControlAlg [64] or a more elaborate dynamic con-
troller could be used. The robot [60] also contains Robot-
Sensors [67] and RobotSensorsAlg [66] to process the
sensor data. These sensor algorithms can include low level
feature extraction, filtering or any other preprocessing meth-
ods.

The HaRD-OS Node [62] is in charge of routing, sched-
uling, authorizing, and authenticating various commands
given to the robot. While the RobotAlgDB [63] contains a
database with various algorithms that are used to control the
robot. These algorithms can include low level primitives
such as moving an actuator to a particular position or more
complicated algorithms such as navigation, reaching and
grasping or complete tasks. One should note that these
algorithms can be stored in any manner including a simple
DB structure with pointers to their algorithms.

Both the RobotSensorsAlg [66] and RobotControlAlg
[64] can be filtered by a signal filter [61] which will change
the module’s behavior with respect to the input or output
signal from RobotAlgDB [63]. For example, the controller
can change its gains when picking up objects off of the floor
vs. manipulating doors. Additionally, as part of the security
control, the robot can be filtered to inhibit the actuators from
performing various manipulations tasks. For example, the
robot could be filtered to prevent access to restricted rooms,
or from being able to reach above a particular height with a
particular arm configurations if the authorization does not
allow it. Lastly, the RobotSensorsAlg [66] can be filtered to
not allow various sensor information from being passed or
additionally changing the sensor filters. For example, the
sensors algorithms can be filtered to not send faces when
utilizing a visual sensor or the location of the robot in the
map.
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III. Operator Hardware

An example of how an operator connected node is shown
in FIG. 10. The HaRD-OS Node [80] is connected to three
operators through a GUI [77] which pass through a set of
algorithms database AlgDB [78]. The algorithms in the
database connected to the operator are there to help the
operator with the task. The operator would typically have
access to a keyboard, joystick, video and audio feeds, depth
maps, as well as motor force and robot pressure/proximity
sensors. There would also be custom information that is
provided based on the task. For example, for a navigational
task a map can be shown in the GUI which the operator will
then use to select the destination as well as any foreseen
obstacles. A searching and grasping task could show the end
effector camera where the operator could click on the object
to enable autonomous visual grasping via visual serving.
Other tasks can include object labeling or label confirmation
(label+image pair provided to operator for confirmation),
object affordance marking, visual searching, or any other
required task. Lastly, the HaRD-OS Node [80] also connects
AlgDB2 [79] which enables autonomous tasks to be
executed without operator assistance. Once again, the
HaRD-OS Node [80] will be in charge of authenticating
each of the operators/algorithms via their public keys to the
set of tasks they are allowed to perform. The HaRD-OS
Node [80] will also schedule the correct operator or algo-
rithm based on the required parameters from the task such as
time, costs, efficiency, affinity, etc. For example, while one
robot would be performing a navigation task, the same
operator could mark the locations of objects for another
robot in a different location.

IV. HaRD-OS Node Example

In this section we are going to go over a particular
example of the HaRD-OS node. A simple layout is shown in
FIG. 14 with two locations. The first location, robot [110]
contains the robot with a Robot Node, and the second
location, operators [109], has a couple of operators with an
operator node. Additionally, each node shows its operator
authentication [111], operator authorization [112], and
operator routing [113] policies. Lastly, an end user [119] is
added which can interact with the robot. It is important to
note that the nodes could be implemented in various ways
and connected in multiple topologies to achieve the required
policies and implementation. The example will follow an
end-user asking the robot to bring him hot tea.

When the end-user asks the robot for hot tea, the first step
is to interpret what the user wants and map it to a particular
task ID. This is achieved by first assembling a TaskRequest
packet with the end-user request as a payload and a random
generated number called the TaskToken. The TaskToken is
used to keep track of the current task commands that might
be coming from multiple locations (see description above).
In this example, the task token will be 12341234. The
TaskRequest packet could include the robot id for the robot
that generated the task, the task body and a mapped task ID.
The task body is a raw form of the task which would need
to be mapped to a task ID that the router can understand.
This mapping can be done autonomously on the robot (via
text-to-speech, tablet/phone control, robot led panel), or
with the assisted help of an operator. If no autonomous
mapping succeeded with mapping the task ID, then the task
ID would remain NULL. Lastly, the TaskRequest packet is
signed using the end-user private key (privUser1). In addi-
tion, each TaskHeader embedded in each packet would
contain an incrementing window number for replay protec-
tion, signed text, weight, fault definition as well as other
parameters required to complete the task.



US 9,457,468 Bl

15

The robot node [118] on the robot would then check the
TaskRequest signature using robot authentication [115] to
determine if the end-user is authorized to make such task
requests, and if the taskID is missing. If the taskID is NULL
then the TaskRequest would get routed to an authorized
algorithm or an operator that is able to map the task to a
known taskID as shown in robot routing [117]. If the
confidence from any such algorithms (such as text-to-
speech) is below a threshold (or any function specified in the
routing table such as end-user response), then the Robot OS
Node will route to the next algorithm or operator in the
routing list. In the current example the robot routing [117] is
set to route any mapping tasks to algorithm id 4. If that
algorithm’s confidence is below 1%, then the interpretation
task is to be routed to the OpNodel, which will be routed to
an operator.

Once a taskID is established (in this example TaskID1),
the robot node [118] would route the taskID to the appro-
priate location capable of achieving the task. This is done by
using the routing policy robot routing [117], which takes into
account various parameters as well as the TaskID routing
database. The TaskID routing database contains the TaskID
and a map to an algorithm, operator, sequence of taskIDs or
a router capable of further handling the TaskID. In this
example the TaskID would be mapped to a sequence of
subTaskIDs in which case each subTaskID would map to a
local algorithms/operators or a different router. Alterna-
tively, the SubTaskID or TaskID would be mapped to an
AlgorithmID that can be used to autonomously achieve the
task or complete the task with an operator assistance. If an
operator assistance is required, the router would route the
Task to an operator based on various routing policies.

In the current example the scheduler in the robot node
[118] will see that TaskID1 maps to a sequence of tasks,
where the next task to be executed is TaskID2. TaskID2
maps to a navigation algorithm which moves the robot
autonomously from its current location to a destination
given by the parameter (in this case the kitchen). Addition-
ally, the FaultID1 algorithm will be used to verify that the
task is being executed correctly. The scheduler in robot node
[118] will then fork another process with AlglD1 giving it
the kitchen parameter. This is achieved by creating a task
packet with TaskToken 12341234, the parameter and other
useful information and send it to AlgID1. While AlgID1 is
running, the scheduler will check for faults using FaultID1.

Additionally, as AlgID1 will send commands to Actuators
or check Sensors, it will sign these requests using its private
key privAlgID1. The scheduler in the robot node [118] will
verify that it does have permissions to exec the commands
needed and that the task token matches the current running
task. The scheduler would also filter/secure any commands
or sensors given the filter listed in robot authorization [116].
This in turn will send the filter signal described above to
limit access. In the current example, AlgID1 is part of
Group2 which is filtered by FilterAlgID1. This algorithm
prevents navigation to any unauthorized locations, such as a
particular bedroom.

When AlgID1 achieves its tasks, it will signal the sched-
uler with the Task-Token that the current subtask is done.
This will cause the scheduler to fork the next subtask in
robot routing [117]. In the current example, this is TaskID3
which maps to AlgID2 with FaultID2 as the fault algorithm.
Therefore, as AlgID2 sends commands to robot node [118]
as described above, the scheduler checks for any faults using
the algorithms or operators described in the routing table. In
the event of a fault, the scheduler will pause the robot (or
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place it in any configuration described by the fault algo-
rithm), and route it to a fault handler entity.

In the current example, the task was to get a cup from a
dispenser, and the fault algorithm checks that there is a cup
in the gripper (among other checks). If the gripper did not
sense the cup, then FaultID2 will trigger which would cause
the scheduler to assemble a fault packet with the current
TaskToken. Since robot routing [117] shows that Fault2
needs to be routed to OpNodel, the robot node [118] will
sign the packet using its private key and send the packet to
OpNodel. The scheduler on OpNodel will receive the
packet and check its operator routing [113] on how to route
this fault. The decision could be made based on various
criteria such as operator affinity, cost, security, etc. In this
example, OpGUI2 is the only one with sufficient permis-
sions to fix the fault.

The scheduler in operator node [114] will send and
receive signed packets from OpGUI2 which contains com-
mands to use sensors or activate actuators on the robot. The
scheduler will then sign these packets with its own private
key (privOpNodel) and send it to robot node [118]. As a
result, the scheduler on robot node [118] will check for the
current signatures (using pubKeyOpNodel) and permissions
and perform the commands. It will also verify the TaskToken
to ensure that the current task is the one that is being fixed.
When the fault is fixed, the scheduler on operator node [114]
will be signaled, which will in turn signal robot node [118].

When the scheduler on robot node [118] gets to TaskID4,
it will need to route it to a different node in order to complete
the sub task (in this example, OpNodel). The scheduler on
the robot node [118] will thus assemble a packet with the
current TaskToken and sign it using its private key.
OpNodel will get the packet and verify the public key and
the permissions. Using operator routing [113], the scheduler
on the operator node [114] will route the task to AlgID2,
which is an autonomous algorithm that is used to fill the cup.
Additionally, the scheduler on operator node [114] will use
FaultID3 algorithm to monitor any faults. As commands are
exchanged between the nodes to complete the task, they will
be signed and verified until the task is completed.

The scheduler on robot node [118] will finish the main
task by executing TaskID5, TaskID2, and TaskIDé6 in a
similar method as above. Node that TaskID5 maps to
TaskID2 on the operator node [114]. This task maps to
OpAlgl which involves getting and placing a tea packet in
the cup. This task is a semi-autonomous task, where the
operator needs to mark the locations of the cup and the tea
packet, while the robot does the rest. This task is an example
of how the UI will change for an operator depending on the
task. In each subtask, the scheduler will monitor for faults
and route the tasks and fault to appropriate handlers. Once
a task is completed by reaching the end of a subTaskList or
a termination of an algorithm or operator, the end-user is
able to verify if the task did in fact get completed or if any
faults have occurred during task execution. If the faults are
generated, then the router is able to route to the appropriate
entity able to handle the fault. Additionally, if the end-user
is not satisfied with the task, he is able to route directly to
an operator that is able to determine what went wrong.

It will thus be seen that the objects set forth above, among
those made apparent from the preceding description, are
efficiently attained and, because certain changes may be
made in carrying out the above method and in the construc-
tion(s) set forth without departing from the spirit and scope
of the invention, it is intended that all matter contained in the
above description and shown in the accompanying drawings
shall be interpreted as illustrative and not in a limiting sense.
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It is also to be understood that the following claims are
intended to cover all of the generic and specific features of
the invention herein described and all statements of the
scope of the invention which, as a matter of language, might
be said to fall there between.

We claim:
1. A computer-implemented method for remotely manag-
ing robot operation, the computer-implemented method
comprising:
receiving a request comprising (i) a first identifier iden-
tifying a particular robot from a plurality of distributed
robots operating in a plurality of locations and (ii) a
second identifier identifying a task for the particular
robot to perform, wherein the particular robot com-
prises a plurality of actuators for performing different
mechanical manipulations and a plurality of sensors
providing sensory feedback about the particular robot
and the plurality of actuators;
retrieving an access control list;
assigning control of the particular robot to a particular
operator from a plurality of operators identified based
on the access control list, wherein the access control list
authorizes a set of operators including the particular
operator in performing said task, wherein said assign-
ing comprises authorizing execution by the particular
robot of commands comprising a particular operator
identifier of the particular operator during completion
of the task;
restricting the particular robot functionality based on a
first set of the plurality of actuators and a first set of the
plurality of sensors said access control list authorizes
the particular operator access to in completion of the
task, wherein said restricting comprises enabling the
particular operator with control of the first set of
actuators and disabling the particular operator from
controlling a different second set of the plurality of
actuators during completion of the task and further
comprises enabling the particular operator with control
of the first set of sensors and disabling the particular
operator from controlling a different second set of the
plurality of sensors during completion of the task; and

filtering commands directed to the particular robot during
execution of said task based on the access control list
and said restricting, wherein said filtering comprises (i)
blocking the particular robot from executing a first
command comprising at least one of the first and
second identifiers and an operator identifier other than
the particular operator identifier, (ii) blocking the par-
ticular robot from executing a second command com-
prising the particular operator identifier and an opera-
tion involving an actuator from the second set of
actuators or a sensor from the second set of sensors not
authorized for use in completion of the task, and (iii)
issuing the particular robot, a third command compris-
ing the particular operator identifier and an operation
involving an actuator from the first set of actuators or
a sensor from the first set of sensors.

2. The computer-implemented method of claim 1,
wherein restricting the particular robot functionality further
comprises limiting an operational range of an actuator in the
first set of actuators to an amount less than a full operational
range of the actuator, and wherein filtering command execu-
tion further comprises blocking the particular robot from
executing a fourth command comprising the particular
operator identifier and an operation moving said actuator
outside said operational range.
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3. The computer-implemented method of claim 1,
wherein restricting the particular robot functionality further
comprises filtering the sensory feedback from a sensor in the
first set of sensors when said sensory feedback comprises
one of a plurality of restricted objects defined in said access
control list.

4. The computer-implemented method of claim 1,
wherein restricting the particular robot functionality further
comprises limiting movements of the robot to a first location
where the task is to be completed, and wherein filtering
command execution further comprises preventing the robot
from moving to a different second location until the task is
completed.

5. The computer-implemented method of claim 1,
wherein assigning control of the particular robot to a par-
ticular operator comprises assigning control of the particular
robot to one of a first human operator or a first algorithm,
enabling the first set of actuators and the first set of sensors
based on permissions the access control list grants to the first
human operator or the first algorithm, and disabling the
second set of actuators and the second set of sensors based
on restrictions the access control list places on the first
human operator or the first algorithm.

6. The computer-implemented method of claim 5, and
wherein restricting the particular robot functionality further
comprises disabling a first subset of the first set of actuators
and the first set of sensors unrelated to the completion of the
task while enabling a different second subset of the first set
of actuators and the first set of sensors related to the
completion of the task.

7. The computer-implemented method of claim 5 further
comprising reassigning control of the particular robot from
the first human operator or the first algorithm to one of a
different second human operator or second algorithm iden-
tified with a second operator identifier that is different than
the particular operator identifier, wherein reassigning con-
trol of the particular robot comprises enabling a different
third set of the plurality of actuators and a third set of the
plurality of sensors while disabling a fourth set of the
plurality of actuators and a fourth set of the plurality of
sensors based on different permissions the access control list
grants to the second human operator or the second algo-
rithm, and wherein said filtering further comprises blocking
the particular robot from executing a fourth command
comprising at least one of the first and second identifiers and
an operator identifier other than the second operator identi-
fier.

8. The computer-implemented method of claim 1,
wherein the task is a first task, and wherein the access
control list defines enabling the first set of actuators and the
first set of sensors while disabling the second set of actuators
and the second set of sensors in completing the first task, and
further defines enabling a different third set of actuators and
a different third set of sensors while disabling a different
fourth set of actuators and a different fourth set of sensors in
completing a different second task.

9. The computer-implemented method of claim 8 further
comprising reconfiguring the particular robot for perfor-
mance of the second task, wherein reconfiguring comprises
enabling the different third set of actuators and the different
third set of sensors while disabling the different fourth set of
actuators and the different fourth set of sensors for perfor-
mance of the second task.
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10. A computer-implemented method comprising:

receiving a plurality of requests comprising a first task

directed to a first robot at a first location and a second
task directed to a second robot at a different second
location;
retrieving an access control list authorizing a plurality of
remote human operators in performing different sets of
tasks with the first and second robots, with at least one
particular human operator authorized in the access
control list to perform the first task and the second task;

configuring the particular human operator remote control
of the first robot and the second robot, wherein said
configuring comprises mapping a first task identifier
identifying the first task and a second task identifier
identifying the second task to an operator identifier of
the particular human operator; and

providing the particular human operator contemporane-

ous and remote control of the first robot and the second
robot, wherein providing said remote control comprises
routing a first set of commands signed with a private
key of the particular human operator and comprising
the first task identifier and the operator identifier of the
particular human operator to the first robot for execu-
tion and routing a second set of commands signed with
the private key of the particular human operator and
comprising the second task identifier and the operator
identifier of the particular human operator to the second
robot for execution.

11. The computer-implemented method of claim 10 fur-
ther comprising blocking a third set of commands signed
with a different private key than the private key of the
particular human operator from execution by the first robot.

12. The computer-implemented method of claim 11,
wherein said mapping further comprises providing a public
key to the first robot, and wherein routing the first set of
commands further comprises authorizing the first robot for
execution of the first set of commands by using the public
key in verifying the first set of commands is signed with the
particular human operator private key.

13. The computer-implemented method of claim 10 fur-
ther comprising (i) monitoring the first robot in completion
of the first task and monitoring the second robot in comple-
tion of the second task and (ii) reassigning control of the first
robot from the particular human operator to a different
human operator or algorithm upon completion of the first
task by remapping the first task identifier to a different
second operator identifier.

14. The computer-implemented method of claim 10,
wherein providing said remote control further comprises
blocking from the first robot, commands omitting one of the
first task identifier and the operator identifier during execu-
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tion of the first task and blocking from the second robot,
commands omitting one of the second task identifier and the
operator identifier during execution of the second task.

15. A computer-implemented method for optimally sched-
uling a plurality of robot operators to remotely control any
of a plurality of robots distributed to a plurality of locations,
the computer-implemented method comprising:

receiving a task for execution by a particular robot of the

plurality of robots;

issuing to each operator of the plurality of robot operators,

a cost and availability request for controlling the par-
ticular robot in performance of the task;

receiving from each operator of the plurality of robot

operators in response to said issuing, at least cost and
availability of each of the plurality of robot operators
for controlling the particular robot in performance of
the task;

selecting an optimal robot operator from the plurality of

robot operators based on said cost and availability of

each of the plurality of robot operators; and
assigning remote control of the particular robot to the

optimal robot operator during performance of the task.

16. The computer-implemented method of claim 15,
wherein the plurality of robot operators comprises a plurality
of human operators for controlling a robot in tasks partly
involving human control of the robot, and wherein a cost of
each human operator of the plurality of human operators is
based on a skill level or expertise level of the human
operator in performing said task.

17. The computer-implemented method of claim 16,
wherein the plurality of robot operators further comprises a
plurality of algorithms providing fully autonomous control
of a robot in performance of different tasks, and wherein a
cost of each algorithm of the plurality of algorithms is based
on efficiency with which the algorithm completes a task.

18. The computer-implemented method of claim 15,
wherein assigning remote control of the particular robot
comprises routing commands from the optimal robot opera-
tor to the particular robot for execution while blocking
commands from other operators of the plurality of robot
operators from execution by the particular robot.

19. The computer-implemented method of claim 15 fur-
ther comprising detecting an error during performance of the
task by the particular robot under control of the optimal
robot operator.

20. The computer-implemented method of claim 19 fur-
ther comprising reassigning control of the particular robot
from the optimal robot operator to a different robot operator
from the plurality of robot operator for resolution of the
error.



